
Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

SLEPc: Scalable Library for Eigenvalue Problem
Computations

Jose E. Roman

High Performance Networking and Computing Group (GRyCAP)
Universidad Politécnica de Valencia, Spain

August, 2004

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Tutorial Outline

1 Introduction
Motivating Examples
Background on
Eigenproblems

2 Basic Description
Overview of SLEPc
Basic Usage

3 Further Details
EPS Options
Spectral
Transformation

4 Advanced Features
5 Concluding Remarks

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Introduction

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Eigenproblems: Motivation

Large sparse eigenvalue problems are among the most demanding
calculations in scientific computing

Example application areas:

I Dynamic structural analysis (e.g. civil engineering)

I Stability analysis (e.g. control engineering)

I Eigenfunction determination (e.g. quantum chemistry)

I Bifurcation analysis (e.g. fluid dynamics)

I Statistics / information retrieval (e.g. Google’s PageRank)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Motivating Example 1: Nuclear Engineering

Modal analysis of nuclear reactor cores

Objectives:

I Improve safety

I Reduce operation costs

Lambda Modes Equation

Lφ = 1
λMφ

Target: modes associated to largest λ

I Criticality (eigenvalues)

I Prediction of instabilities and
transient analysis (eigenvectors)

0 10
0

10

0

0.09

0.18

0.27

0.36

0.45

0.54

0.63

0.72

0.81

0 10
0

10

0 10
0

10

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

−1.39e−16

0.1

0.2

0.3

0.4

0.5

0.6

0 10
0

10

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Motivating Example 1: Nuclear Engineering

Modal analysis of nuclear reactor cores

Objectives:

I Improve safety

I Reduce operation costs

Lambda Modes Equation

Lφ = 1
λMφ

Target: modes associated to largest λ

I Criticality (eigenvalues)

I Prediction of instabilities and
transient analysis (eigenvectors)

0 10
0

10

0

0.09

0.18

0.27

0.36

0.45

0.54

0.63

0.72

0.81

0 10
0

10

0 10
0

10

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

−1.39e−16

0.1

0.2

0.3

0.4

0.5

0.6

0 10
0

10

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Motivating Example 1: Nuclear Engineering (cont’d)

Discretized eigenproblem[
L11 0
−L21 L22

] [
ψ1

ψ2

]
=

1
λ

[
M11 M12

0 0

] [
ψ1

ψ2

]
Can be restated as

L−1
11

(
M11 +M12L

−1
22 L21

)
ψ1 = λψ1

Notes:

I Standard eigenproblem

I Matrix should not be computed explicitly

I In some applications, many successive problems are solved

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Motivating Example 1: Nuclear Engineering (cont’d)

Discretized eigenproblem[
L11 0
−L21 L22

] [
ψ1

ψ2

]
=

1
λ

[
M11 M12

0 0

] [
ψ1

ψ2

]
Can be restated as

L−1
11

(
M11 +M12L

−1
22 L21

)
ψ1 = λψ1

Notes:

I Standard eigenproblem

I Matrix should not be computed explicitly

I In some applications, many successive problems are solved

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Motivating Example 1: Nuclear Engineering (cont’d)

Discretized eigenproblem[
L11 0
−L21 L22

] [
ψ1

ψ2

]
=

1
λ

[
M11 M12

0 0

] [
ψ1

ψ2

]
Can be restated as

L−1
11

(
M11 +M12L

−1
22 L21

)
ψ1 = λψ1

Notes:

I Standard eigenproblem

I Matrix should not be computed explicitly

I In some applications, many successive problems are solved

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Motivating Example 2: Computational Electromagnetics

Objective: Analysis of resonant cavities

Source-free wave
equations

∇× (µ̂−1
r ∇× ~E)− κ2

0ε̂r
~E=0

∇× (ε̂−1
r ∇× ~H)− κ2

0µ̂r
~H=0

Target: A few smallest nonzero eigenfrequencies

Discretization: 1st order edge finite elements (tetrahedral)

Ax = κ2
0Bx Generalized Eigenvalue Problem

I A and B are large and sparse, possibly complex

I A is (complex) symmetric and semi-positive definite

I B is (complex) symmetric and positive definite

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Motivating Example 2: Computational Electromagnetics

Objective: Analysis of resonant cavities

Source-free wave
equations

∇× (µ̂−1
r ∇× ~E)− κ2

0ε̂r
~E=0

∇× (ε̂−1
r ∇× ~H)− κ2

0µ̂r
~H=0

Target: A few smallest nonzero eigenfrequencies

Discretization: 1st order edge finite elements (tetrahedral)

Ax = κ2
0Bx Generalized Eigenvalue Problem

I A and B are large and sparse, possibly complex

I A is (complex) symmetric and semi-positive definite

I B is (complex) symmetric and positive definite

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Motivating Example 2: Comp. Electromagnetics (cont’d)

Matrix A has a high-dimensional null space, N (A)

I The problem Ax = κ2
0Bx has many zero eigenvalues

I These eigenvalues should be avoided during computation

λ1, λ2, . . . , λk︸ ︷︷ ︸
=0

, λk+1, λk+2︸ ︷︷ ︸
Target

, . . . , λn

Eigenfunctions associated to 0 are irrotational electric fields,
~E = −∇Φ. This allows the computation of a basis of N (A)

Constrained Eigenvalue Problem

Ax = κ2
0Bx

CTBx = 0

} where the columns
of C span N (A)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Motivating Example 2: Comp. Electromagnetics (cont’d)

Matrix A has a high-dimensional null space, N (A)

I The problem Ax = κ2
0Bx has many zero eigenvalues

I These eigenvalues should be avoided during computation

λ1, λ2, . . . , λk︸ ︷︷ ︸
=0

, λk+1, λk+2︸ ︷︷ ︸
Target

, . . . , λn

Eigenfunctions associated to 0 are irrotational electric fields,
~E = −∇Φ. This allows the computation of a basis of N (A)

Constrained Eigenvalue Problem

Ax = κ2
0Bx

CTBx = 0

} where the columns
of C span N (A)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Facts Observed from the Examples

I Many formulations
I Not all eigenproblems are formulated as simply Ax = λx or
Ax = λBx

I We have to account for: spectral transformations,
block-structured problems, constrained problems, etc.

I Wanted solutions
I Many ways of specifying which solutions must be sought
I We have to account for: different extreme eigenvalues as well

as interior ones

I Various problem characteristics
I Problems can be real/complex, Hermitian/non-Hermitian

Goal: provide a uniform, coherent way of addressing these problems

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Facts Observed from the Examples

I Many formulations
I Not all eigenproblems are formulated as simply Ax = λx or
Ax = λBx

I We have to account for: spectral transformations,
block-structured problems, constrained problems, etc.

I Wanted solutions
I Many ways of specifying which solutions must be sought
I We have to account for: different extreme eigenvalues as well

as interior ones

I Various problem characteristics
I Problems can be real/complex, Hermitian/non-Hermitian

Goal: provide a uniform, coherent way of addressing these problems

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Facts Observed from the Examples

I Many formulations
I Not all eigenproblems are formulated as simply Ax = λx or
Ax = λBx

I We have to account for: spectral transformations,
block-structured problems, constrained problems, etc.

I Wanted solutions
I Many ways of specifying which solutions must be sought
I We have to account for: different extreme eigenvalues as well

as interior ones

I Various problem characteristics
I Problems can be real/complex, Hermitian/non-Hermitian

Goal: provide a uniform, coherent way of addressing these problems

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Facts Observed from the Examples

I Many formulations
I Not all eigenproblems are formulated as simply Ax = λx or
Ax = λBx

I We have to account for: spectral transformations,
block-structured problems, constrained problems, etc.

I Wanted solutions
I Many ways of specifying which solutions must be sought
I We have to account for: different extreme eigenvalues as well

as interior ones

I Various problem characteristics
I Problems can be real/complex, Hermitian/non-Hermitian

Goal: provide a uniform, coherent way of addressing these problems

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Background on Eigenvalue Problems

Consider the following eigenvalue problems

Standard Eigenproblem

Ax = λx

Generalized Eigenproblem

Ax = λBx

where

I λ is a (complex) scalar: eigenvalue

I x is a (complex) vector: eigenvector

I Matrices A and B can be real or complex

I Matrices A and B can be symmetric (Hermitian) or not

I Typically, B is symmetric positive (semi-) definite

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Solution of the Eigenvalue Problem

There are n eigenvalues (counted with their multiplicities)

Partial eigensolution: nev solutions

λ0, λ1, . . . , λnev−1 ∈ C
x0, x1, . . . , xnev−1 ∈ Cn

nev = number of
eigenvalues /
eigenvectors
(eigenpairs)

Different requirements:

I Compute a few of the dominant eigenvalues (largest
magnitude)

I Compute a few λi’s with smallest or largest real parts

I Compute all λi’s in a certain region of the complex plane

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Solution of the Eigenvalue Problem

There are n eigenvalues (counted with their multiplicities)

Partial eigensolution: nev solutions

λ0, λ1, . . . , λnev−1 ∈ C
x0, x1, . . . , xnev−1 ∈ Cn

nev = number of
eigenvalues /
eigenvectors
(eigenpairs)

Different requirements:

I Compute a few of the dominant eigenvalues (largest
magnitude)

I Compute a few λi’s with smallest or largest real parts

I Compute all λi’s in a certain region of the complex plane

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Single-Vector Methods

The following algorithm converges to the dominant eigenpair
(λ1, x1), where |λ1| > |λ2| ≥ · · · ≥ |λn|

Power Method

Set y = v0
For k = 1, 2, . . .

v = y/‖y‖2

y = Av
θ = vHy
Check convergence

end

Notes:

I Only needs two vectors

I Deflation schemes to find
subsequent eigenpairs

I Slow convergence
(proportional to |λ1/λ2|)

I Fails if |λ1| = |λ2|

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Single-Vector Methods

The following algorithm converges to the dominant eigenpair
(λ1, x1), where |λ1| > |λ2| ≥ · · · ≥ |λn|

Power Method

Set y = v0
For k = 1, 2, . . .

v = y/‖y‖2

y = Av
θ = vHy
Check convergence

end

Notes:

I Only needs two vectors

I Deflation schemes to find
subsequent eigenpairs

I Slow convergence
(proportional to |λ1/λ2|)

I Fails if |λ1| = |λ2|

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Variants of the Power Method

Shifted Power Method

I Example: Markov chain problem has two dominant
eigenvalues λ1 = 1, λ2 = −1 =⇒ Power Method fails!

I Solution: Apply the Power Method to matrix A+ σI

Inverse Iteration

I Observation: The eigenvectors of A and A−1 are identical

I The Power Method on (A− σI)−1 will compute the
eigenvalues closest to σ

Rayleigh Quotient Iteration (RQI)

I Similar to Inverse Iteration but updating σ in each iteration

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Variants of the Power Method

Shifted Power Method

I Example: Markov chain problem has two dominant
eigenvalues λ1 = 1, λ2 = −1 =⇒ Power Method fails!

I Solution: Apply the Power Method to matrix A+ σI

Inverse Iteration

I Observation: The eigenvectors of A and A−1 are identical

I The Power Method on (A− σI)−1 will compute the
eigenvalues closest to σ

Rayleigh Quotient Iteration (RQI)

I Similar to Inverse Iteration but updating σ in each iteration

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Variants of the Power Method

Shifted Power Method

I Example: Markov chain problem has two dominant
eigenvalues λ1 = 1, λ2 = −1 =⇒ Power Method fails!

I Solution: Apply the Power Method to matrix A+ σI

Inverse Iteration

I Observation: The eigenvectors of A and A−1 are identical

I The Power Method on (A− σI)−1 will compute the
eigenvalues closest to σ

Rayleigh Quotient Iteration (RQI)

I Similar to Inverse Iteration but updating σ in each iteration

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Spectral Transformation

A general technique that can be used in many methods

Ax = λx =⇒ Tx = θx

In the transformed problem

I The eigenvectors are not altered

I The eigenvalues are modified by a simple relation

I Convergence is usually improved (better separation)

Shift of Origin

TS = A+ σI

Shift-and-invert

TSI = (A−σI)−1

Cayley

TC = (A−σI)−1(A+τI)

Drawback: T not computed explicitly, linear solves instead

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Spectral Transformation

A general technique that can be used in many methods

Ax = λx =⇒ Tx = θx

In the transformed problem

I The eigenvectors are not altered

I The eigenvalues are modified by a simple relation

I Convergence is usually improved (better separation)

Shift of Origin

TS = A+ σI

Shift-and-invert

TSI = (A−σI)−1

Cayley

TC = (A−σI)−1(A+τI)

Drawback: T not computed explicitly, linear solves instead

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Spectral Transformation

A general technique that can be used in many methods

Ax = λx =⇒ Tx = θx

In the transformed problem

I The eigenvectors are not altered

I The eigenvalues are modified by a simple relation

I Convergence is usually improved (better separation)

Shift of Origin

TS = A+ σI

Shift-and-invert

TSI = (A−σI)−1

Cayley

TC = (A−σI)−1(A+τI)

Drawback: T not computed explicitly, linear solves instead

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Invariant Subspace

A subspace S is called an invariant subspace of A if AS ⊂ S

I If A ∈ Cn×n, V ∈ Cn×k, and H ∈ Ck×k satisfy

AV = V H

then S ≡ C(V) is an invariant subspace of A

Objective: build an invariant subspace to extract the eigensolutions

Partial Schur Decomposition

AQ = QR

I Q has nev columns which are orthonormal

I R is a nev × nev upper (quasi-) triangular matrix

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Invariant Subspace

A subspace S is called an invariant subspace of A if AS ⊂ S

I If A ∈ Cn×n, V ∈ Cn×k, and H ∈ Ck×k satisfy

AV = V H

then S ≡ C(V) is an invariant subspace of A

Objective: build an invariant subspace to extract the eigensolutions

Partial Schur Decomposition

AQ = QR

I Q has nev columns which are orthonormal

I R is a nev × nev upper (quasi-) triangular matrix

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Projection Methods

The general scheme of a projection method:

1. Build an orthonormal basis of a certain subspace

2. Project the original problem onto this subspace

3. Use the solution of the projected problem to compute an
approximate invariant subspace

I Different methods use different subspaces
I Subspace Iteration: AkX
I Arnoldi, Lanczos: Km(A, v1) = span{v1, Av1, . . . , Am−1v1}

I Dimension of the subspace: ncv (number of column vectors)

I Restart & deflation necessary until nev solutions converged

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Projection Methods

The general scheme of a projection method:

1. Build an orthonormal basis of a certain subspace

2. Project the original problem onto this subspace

3. Use the solution of the projected problem to compute an
approximate invariant subspace

I Different methods use different subspaces
I Subspace Iteration: AkX
I Arnoldi, Lanczos: Km(A, v1) = span{v1, Av1, . . . , Am−1v1}

I Dimension of the subspace: ncv (number of column vectors)

I Restart & deflation necessary until nev solutions converged

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Summary

Observations to be added to the previous ones

I The solver computes only nev eigenpairs

I Internally, it works with ncv vectors

I Single-vector methods are very limited

I Projection methods are preferred

I Internally, solvers can be quite complex (deflation, restart, ...)

I Spectral transformations can be used irrespective of the solver

I Repeated linear solves may be required

Goal: hide eigensolver complexity and separate spectral transform

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Summary

Observations to be added to the previous ones

I The solver computes only nev eigenpairs

I Internally, it works with ncv vectors

I Single-vector methods are very limited

I Projection methods are preferred

I Internally, solvers can be quite complex (deflation, restart, ...)

I Spectral transformations can be used irrespective of the solver

I Repeated linear solves may be required

Goal: hide eigensolver complexity and separate spectral transform

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Basic Description

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Executive Summary

SLEPc: Scalable Library for Eigenvalue Problem Computations

A general library for solving large-scale sparse eigenproblems on
parallel computers

I For standard and generalized eigenproblems

I For real and complex arithmetic

I For Hermitian or non-Hermitian problems

Current version: 2.2.1 (released August 2004)

http://www.grycap.upv.es/slepc

http://www.grycap.upv.es/slepc

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

SLEPc and PETSc

SLEPc extends PETSc for solving eigenvalue problems

PETSc: Portable, Extensible Toolkit for Scientific Computation

I Software for the solution of PDE’s in parallel computers

I A freely available and supported research code

I Usable from C, C++, Fortran77/90

I Focus on abstraction, portability, interoperability, ...

I Object-oriented design (encapsulation, inheritance and
polymorphism)

I Current: 2.2.1 http://www.mcs.anl.gov/petsc

SLEPc inherits all good properties of PETSc

http://www.mcs.anl.gov/petsc

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Structure of SLEPc

SLEPc adds two new objects: EPS and ST

EPS: Eigenvalue Problem Solver

I The user specifies the problem via this object (entry point to
SLEPc)

I Provides a collection of eigensolvers

I Allows the user to specify a number of parameters (e.g. which
portion of the spectrum)

ST: Spectral Transformation

I Used to transform the original problem into Tx = θx

I Always associated to an EPS object, not used directly

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Structure of SLEPc

SLEPc adds two new objects: EPS and ST

EPS: Eigenvalue Problem Solver

I The user specifies the problem via this object (entry point to
SLEPc)

I Provides a collection of eigensolvers

I Allows the user to specify a number of parameters (e.g. which
portion of the spectrum)

ST: Spectral Transformation

I Used to transform the original problem into Tx = θx

I Always associated to an EPS object, not used directly

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Structure of SLEPc

SLEPc adds two new objects: EPS and ST

EPS: Eigenvalue Problem Solver

I The user specifies the problem via this object (entry point to
SLEPc)

I Provides a collection of eigensolvers

I Allows the user to specify a number of parameters (e.g. which
portion of the spectrum)

ST: Spectral Transformation

I Used to transform the original problem into Tx = θx

I Always associated to an EPS object, not used directly

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

SLEPc/PETSc Diagram

Eigensolvers

Newton−based Methods
Other

Line Search Trust Region

Nonlinear Solvers

Other

Arnoldi

Time Steppers

Other
Pseudo Time

Stepping

Spectral Transform

Shift−and−invertShift

PETSc SLEPc

OtherGMRES Chebychev

Krylov Subspace Methods

Preconditioners

Matrices

OtherLUICCILUJacobiBlock JacobiAdditive
Schwarz

OtherDenseBlock Diagonal
(BDIAG)

Blocked Compressed
Sparse Row (AIJ)

Compressed
Sparse Row (BAIJ)

Vectors
Indices Block Indices Stride Other

Index Sets

Power/RQI Subspace

Arpack Blzpack

Cayley

Euler Euler
Backward

CG CGS Bi−CGStab TFQMR Richardson

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Basic Usage

Usual steps for solving an eigenvalue problem with SLEPc:

1. Create an EPS object

2. Define the eigenvalue problem

3. (Optionally) Specify options for the solution

4. Run the eigensolver

5. Retrieve the computed solution

6. Destroy the EPS object

All these operations are done via a generic interface, common to
all the eigensolvers

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Simple Example
EPS eps; /* eigensolver context */
Mat A, B; /* matrices of Ax=kBx */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);

}

EPSDestroy(eps);

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Simple Example
EPS eps; /* eigensolver context */
Mat A, B; /* matrices of Ax=kBx */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);

}

EPSDestroy(eps);

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Simple Example
EPS eps; /* eigensolver context */
Mat A, B; /* matrices of Ax=kBx */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);

}

EPSDestroy(eps);

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Simple Example
EPS eps; /* eigensolver context */
Mat A, B; /* matrices of Ax=kBx */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);

}

EPSDestroy(eps);

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Simple Example
EPS eps; /* eigensolver context */
Mat A, B; /* matrices of Ax=kBx */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);

}

EPSDestroy(eps);

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Details: Object Management

EPS is managed like any other PETSc object

EPSCreate(MPI Comm comm,EPS *eps)

Creates a new instance

EPS is a “parallel” object:

I Parallel details are hidden from the programmer

I Many operations are collective

EPSDestroy(EPS eps)

Destroys the instance

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Details: Object Management

EPS is managed like any other PETSc object

EPSCreate(MPI Comm comm,EPS *eps)

Creates a new instance

EPS is a “parallel” object:

I Parallel details are hidden from the programmer

I Many operations are collective

EPSDestroy(EPS eps)

Destroys the instance

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Details: Problem Definition

EPSSetOperators(EPS eps, Mat A, Mat B)

Used to pass the matrices that constitute the problem

I A generalized problem Ax = λBx is specified by A and B

I For a standard problem Ax = λx set B=PETSC NULL

EPSSetProblemType(EPS eps,EPSProblemType type)

Used to indicate the problem type

Problem Type EPSProblemType Command line key
Hermitian EPS HEP -eps hermitian
Generalized Hermitian EPS GHEP -eps gen hermitian
Non-Hermitian EPS NHEP -eps non hermitian
Generalized Non-Herm. EPS GNHEP -eps gen non hermitian

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Details: Problem Definition

EPSSetOperators(EPS eps, Mat A, Mat B)

Used to pass the matrices that constitute the problem

I A generalized problem Ax = λBx is specified by A and B

I For a standard problem Ax = λx set B=PETSC NULL

EPSSetProblemType(EPS eps,EPSProblemType type)

Used to indicate the problem type

Problem Type EPSProblemType Command line key
Hermitian EPS HEP -eps hermitian
Generalized Hermitian EPS GHEP -eps gen hermitian
Non-Hermitian EPS NHEP -eps non hermitian
Generalized Non-Herm. EPS GNHEP -eps gen non hermitian

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Details: Specification of Options

EPSSetFromOptions(EPS eps)

Looks in the command line for options related to EPS

For example, the following command line

% program -eps_hermitian

is equivalent to a call EPSSetProblemType(eps,EPS HEP)

Other options have an associated function call

% program -eps_nev 6 -eps_tol 1e-8

EPSView(EPS eps, PetscViewer viewer)

Prints information about the object (equivalent to -eps view)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Details: Specification of Options

EPSSetFromOptions(EPS eps)

Looks in the command line for options related to EPS

For example, the following command line

% program -eps_hermitian

is equivalent to a call EPSSetProblemType(eps,EPS HEP)

Other options have an associated function call

% program -eps_nev 6 -eps_tol 1e-8

EPSView(EPS eps, PetscViewer viewer)

Prints information about the object (equivalent to -eps view)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Details: Specification of Options

EPSSetFromOptions(EPS eps)

Looks in the command line for options related to EPS

For example, the following command line

% program -eps_hermitian

is equivalent to a call EPSSetProblemType(eps,EPS HEP)

Other options have an associated function call

% program -eps_nev 6 -eps_tol 1e-8

EPSView(EPS eps, PetscViewer viewer)

Prints information about the object (equivalent to -eps view)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Details: Solving the Problem

EPSSolve(EPS eps)

Launches the eigensolver

Currently available eigensolvers:

I Power Iteration with deflation. This includes:
I Inverse Iteration
I Rayleigh Quotient Iteration (RQI)

I Subspace Iteration with Rayleigh-Ritz projection and locking

I Arnoldi method with explicit restart and deflation

Also interfaces to external software such as ARPACK

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Details: Getting the Solution

EPSGetConverged(EPS eps, int *nconv)

Returns the number of computed eigenpairs

The number of computed eigenpairs may differ from that requested

EPSGetEigenpair(EPS eps, int i, PetscScalar *kr,
PetscScalar *ki, Vec xr, Vec xi)

Returns the i-th solution of the eigenproblem

kr Real part of the eigenvalue

ki Imaginary part of the eigenvalue

xr Real part of the eigenvector

xi Imaginary part of the eigenvector

The eigenvalues are ordered according to certain criterion

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Details: Getting the Solution

EPSGetConverged(EPS eps, int *nconv)

Returns the number of computed eigenpairs

The number of computed eigenpairs may differ from that requested

EPSGetEigenpair(EPS eps, int i, PetscScalar *kr,
PetscScalar *ki, Vec xr, Vec xi)

Returns the i-th solution of the eigenproblem

kr Real part of the eigenvalue

ki Imaginary part of the eigenvalue

xr Real part of the eigenvector

xi Imaginary part of the eigenvector

The eigenvalues are ordered according to certain criterion

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Built-in Support Tools

I Monitoring convergence

% program -eps_monitor

I Plotting computed eigenvalues

% program -eps_plot_eigs

I Printing profiling information

% program -log_summary

I Debugging

% program -start_in_debugger

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Further Details

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Eigensolver Parameters

EPSSetDimensions(EPS eps, int nev, int ncv)

nev Number of requested eigenvalues (-eps nev)

ncv Number of column vectors (i.e. largest dimension of
the working subspace) (-eps ncv)

I One may let SLEPc decide the value of ncv

I Typically, ncv > 2 · nev, even larger if possible

EPSSetTolerances(EPS eps, PetscReal tol, int max it)

tol Tolerance for the convergence criterion (-eps tol)

max it Maximum number of iterations (-eps max it)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Eigensolver Parameters

EPSSetDimensions(EPS eps, int nev, int ncv)

nev Number of requested eigenvalues (-eps nev)

ncv Number of column vectors (i.e. largest dimension of
the working subspace) (-eps ncv)

I One may let SLEPc decide the value of ncv

I Typically, ncv > 2 · nev, even larger if possible

EPSSetTolerances(EPS eps, PetscReal tol, int max it)

tol Tolerance for the convergence criterion (-eps tol)

max it Maximum number of iterations (-eps max it)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Changing the Eigensolver

EPSSetType(EPS eps,EPSType type)

Used to specify the solution algorithm

Method EPSType -eps type
Dense (LAPACK) EPSLAPACK lapack
Power / Inverse / RQI EPSPOWER power
Subspace Iteration EPSSUBSPACE subspace
Arnoldi Method EPSARNOLDI arnoldi
Interface to ARPACK EPSARPACK arpack
Interface to BLZPACK EPSBLZPACK blzpack
Interface to PLANSO EPSPLANSO planso
Interface to TRLAN EPSTRLAN trlan

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Selecting the Portion of the Spectrum

EPSSetWhichEigenpairs(EPS eps, EPSWhich which)

Specifies which part of the spectrum is requested

which Command line key Sorting criterion

EPS LARGEST MAGNITUDE -eps largest magnitude Largest |λ|
EPS SMALLEST MAGNITUDE -eps smallest magnitude Smallest |λ|
EPS LARGEST REAL -eps largest real Largest Re(λ)
EPS SMALLEST REAL -eps smallest real Smallest Re(λ)
EPS LARGEST IMAGINARY -eps largest imaginary Largest Im(λ)
EPS SMALLEST IMAGINARY -eps smallest imaginary Smallest Im(λ)

I Eigenvalues are sought according to this criterion (not all
possibilities available for all solvers)

I Computed eigenvalues are sorted according to this criterion

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Run-Time Examples

% program -eps_view -eps_monitor

% program -eps_type power -eps_nev 6 -eps_ncv 24

% program -eps_type arnoldi -eps_tol 1e-8 -eps_max_it 2000

% program -eps_type subspace -eps_hermitian -log_summary

% program -eps_type lapack

% program -eps_type arpack -eps_plot_eigs -draw_pause -1

% program -eps_type blzpack -eps_smallest_real

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Some Utilities

EPSSetInitialVector(EPS eps,Vec v0)

Sets the initial vector used to build the projection subspace

I Should be rich in the directions of wanted eigenvectors

I If no initial vector is provided, a random vector is used

EPSComputeRelativeError(EPS eps,int j,PetscReal *err)

Returns the relative error associated to the j-th solution

‖Axj−λjBxj‖
‖λjxj‖

If λj ' 0 then it is computed as ‖Axj‖/‖xj‖

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Some Utilities

EPSSetInitialVector(EPS eps,Vec v0)

Sets the initial vector used to build the projection subspace

I Should be rich in the directions of wanted eigenvectors

I If no initial vector is provided, a random vector is used

EPSComputeRelativeError(EPS eps,int j,PetscReal *err)

Returns the relative error associated to the j-th solution

‖Axj−λjBxj‖
‖λjxj‖

If λj ' 0 then it is computed as ‖Axj‖/‖xj‖

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

Ax = λx =⇒ Tx = θx

I The user need not manage the ST object directly

I Internally, the eigensolver works with the operator T

I At the end, eigenvalues are transformed back automatically

ST Standard problem Generalized problem

shift A+ σI B−1A+ σI
sinvert (A− σI)−1 (A− σB)−1B
cayley (A− σI)−1(A+ τI) (A− σB)−1(A+ τB)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

Ax = λx =⇒ Tx = θx

I The user need not manage the ST object directly

I Internally, the eigensolver works with the operator T

I At the end, eigenvalues are transformed back automatically

ST Standard problem Generalized problem

shift A+ σI B−1A+ σI
sinvert (A− σI)−1 (A− σB)−1B
cayley (A− σI)−1(A+ τI) (A− σB)−1(A+ τB)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

Ax = λx =⇒ Tx = θx

I The user need not manage the ST object directly

I Internally, the eigensolver works with the operator T

I At the end, eigenvalues are transformed back automatically

ST Standard problem Generalized problem

shift A+ σI B−1A+ σI
sinvert (A− σI)−1 (A− σB)−1B
cayley (A− σI)−1(A+ τI) (A− σB)−1(A+ τB)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Defining the Spectral Transform

STSetType(ST st,STType type)

For setting the type of spectral transformation

Spectral Transform type -st type Operator
Shift of origin STSHIFT shift B−1A+ σI
Shift-and-invert STSINV sinvert (A− σB)−1B
Cayley STCAYLEY cayley (A− σB)−1(A+ τB)

The default is shift of origin with a value of σ = 0

STSetShift(ST st,PetscScalar shift)

Used to provide the value of the shift σ (-st shift)

There is an analogous function for setting the value of τ

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Defining the Spectral Transform

STSetType(ST st,STType type)

For setting the type of spectral transformation

Spectral Transform type -st type Operator
Shift of origin STSHIFT shift B−1A+ σI
Shift-and-invert STSINV sinvert (A− σB)−1B
Cayley STCAYLEY cayley (A− σB)−1(A+ τB)

The default is shift of origin with a value of σ = 0

STSetShift(ST st,PetscScalar shift)

Used to provide the value of the shift σ (-st shift)

There is an analogous function for setting the value of τ

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Accessing the ST Object

The user does not create the ST object

EPSGetST(EPS eps, ST *st)

Gets the ST object associated to an EPS

Necessary for setting options in the source code

Linear Solves. All operators contain an inverse (except B−1A+ σI
in the case of a standard problem)

I Linear solves are handled internally via a KSP object

STGetKSP(ST st, KSP *ksp)

Gets the KSP object associated to an ST

All KSP options are available, by prepending the -st prefix

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Accessing the ST Object

The user does not create the ST object

EPSGetST(EPS eps, ST *st)

Gets the ST object associated to an EPS

Necessary for setting options in the source code

Linear Solves. All operators contain an inverse (except B−1A+ σI
in the case of a standard problem)

I Linear solves are handled internally via a KSP object

STGetKSP(ST st, KSP *ksp)

Gets the KSP object associated to an ST

All KSP options are available, by prepending the -st prefix

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

More Run-Time Examples

% program -eps_type power -st_type shift -st_shift 1.5

% program -eps_type power -st_type sinvert -st_shift 1.5

% program -eps_type power -st_type sinvert
-eps_power_shift_type rayleigh

% program -eps_type arpack -eps_tol 1e-6
-st_type sinvert -st_shift 1
-st_ksp_type cgs -st_ksp_rtol 1e-8
-st_pc_type sor -st_pc_sor_omega 1.3

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Advanced Features

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Coefficient Matrix of Linear Systems

STSetMatMode(ST st, STMatMode mode)

Allows to modify the way in which the matrix A− σB is created

mode -st matmode Description
STMATMODE COPY copy Creates a copy (default)
STMATMODE INPLACE inplace Overwrites matrix A
STMATMODE SHELL shell Uses a shell matrix

STSetMatStructure(ST st, MatStructure str)

To indicate whether matrices A and B have the same nonzero
structure or not

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Coefficient Matrix of Linear Systems

STSetMatMode(ST st, STMatMode mode)

Allows to modify the way in which the matrix A− σB is created

mode -st matmode Description
STMATMODE COPY copy Creates a copy (default)
STMATMODE INPLACE inplace Overwrites matrix A
STMATMODE SHELL shell Uses a shell matrix

STSetMatStructure(ST st, MatStructure str)

To indicate whether matrices A and B have the same nonzero
structure or not

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Orthogonalization in SLEPc

Gram-Schmidt with Iterative
Refinement. Parameter η
controls the frequency of
reorthogonalizations

Classical Gram-Schmidt

h = QHv
q̃ = v −Qh
If ||q̃||2 < η||h||2

s = QH q̃
q̃ = q̃ −Qs
h = h+ s

End
q = q̃/||q̃||2

Modified Gram-Schmidt

q̃ = v
For i = 1, . . . ,m

hi = qH
i q̃

q̃ = q̃ − qihi

End
If ||q̃||2 < η||h||2

For i = 1, . . . ,m
si = qH

i q̃
q̃ = q̃ − qisi

End
h = h+ s

End
q = q̃/||q̃||2

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Changing the Orthogonalization Method

EPSSetOrthogonalization(EPS eps,
EPSOrthogonalizationType type,
EPSOrthogonalizationRefinementType refinement,
PetscReal eta)

Specifies the orthogonalization method and its parameters

type -eps orthog type Orthogonalization

EPS CGS ORTH cgs Classical Gram-Schmidt
EPS MGS ORTH mgs Modified Gram-Schmidt

-eps orthog

refinement refinement Refinement

EPS ORTH REFINE NEVER never No reorthogonalization
EPS ORTH REFINE ALWAYS always Two iterations
EPS ORTH REFINE IFNEEDED ifneeded Depends on parameter η

-eps orthog eta

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Preserving the Symmetry

In the case of generalized eigenproblems in which both A and B
are symmetric, symmetry is lost because none of B−1A+ σI,
(A− σB)−1B or (A− σB)−1(A+ τB) is symmetric

Choice of Inner Product

I Standard Hermitian inner product: 〈x, y〉 = xHy

I B-inner product: 〈x, y〉B = xHB y

Observations:

I 〈x, y〉B is a genuine inner product only if B is symmetric
positive definite

I Rn with 〈x, y〉B is isomorphic to the Euclidean n-space Rn

with the standard Hermitian inner product

I B−1A is auto-adjoint with respect to 〈x, y〉B

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Preserving the Symmetry

In the case of generalized eigenproblems in which both A and B
are symmetric, symmetry is lost because none of B−1A+ σI,
(A− σB)−1B or (A− σB)−1(A+ τB) is symmetric

Choice of Inner Product

I Standard Hermitian inner product: 〈x, y〉 = xHy

I B-inner product: 〈x, y〉B = xHB y

Observations:

I 〈x, y〉B is a genuine inner product only if B is symmetric
positive definite

I Rn with 〈x, y〉B is isomorphic to the Euclidean n-space Rn

with the standard Hermitian inner product

I B−1A is auto-adjoint with respect to 〈x, y〉B

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Preserving the Symmetry

In the case of generalized eigenproblems in which both A and B
are symmetric, symmetry is lost because none of B−1A+ σI,
(A− σB)−1B or (A− σB)−1(A+ τB) is symmetric

Choice of Inner Product

I Standard Hermitian inner product: 〈x, y〉 = xHy

I B-inner product: 〈x, y〉B = xHB y

Observations:

I 〈x, y〉B is a genuine inner product only if B is symmetric
positive definite

I Rn with 〈x, y〉B is isomorphic to the Euclidean n-space Rn

with the standard Hermitian inner product

I B−1A is auto-adjoint with respect to 〈x, y〉B

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

SLEPc Abstraction

These operations are virtual functions: STInnerProduct and STApply

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

SLEPc Abstraction

These operations are virtual functions: STInnerProduct and STApply

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Deflation Subspaces

EPSAttachDeflationSpace(EPS eps,int n,Vec *ds,PetscTruth ortho)

Allows to provide a basis of a deflating subspace S

The eigensolver works with the restriction of the problem to the
orthogonal complement of this subspace S

Possible uses:

I When S is an invariant subspace, then the corresponding
eigenpairs are not computed again

I If S is the null space of the operator, then zero eigenvalues
are skipped

I In general, for constrained eigenvalue problems

I Also for singular pencils (A and B share a common null space)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Deflation Subspaces

EPSAttachDeflationSpace(EPS eps,int n,Vec *ds,PetscTruth ortho)

Allows to provide a basis of a deflating subspace S

The eigensolver works with the restriction of the problem to the
orthogonal complement of this subspace S

Possible uses:

I When S is an invariant subspace, then the corresponding
eigenpairs are not computed again

I If S is the null space of the operator, then zero eigenvalues
are skipped

I In general, for constrained eigenvalue problems

I Also for singular pencils (A and B share a common null space)

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Concluding Remarks

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Highlights

I Growing number of eigensolvers

I Seamlessly integrated spectral transformation

I Easy programming with PETSc’s object-oriented style

I Data-structure neutral implementation

I Run-time flexibility, giving full control over the solution
process

I Portability to a wide range of parallel platforms

I Usable from code written in C, C++ and Fortran

I Extensive documentation

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Future Directions

Short Term

I Lanczos method with different reorthogonalization strategies

I Davidson method

Mid Term

I Implicitly Restarted Arnoldi method

I Support for a series of closely related problems

Longer Term

I Jacobi-Davidson method

I Block versions of some eigensolvers

I Enable computational intervals in some eigensolvers

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Notice to Users

Help us improve SLEPc!

Want to hear about:

I New features you would like to see

I Bugs or portability problems

I Request for project collaboration

Contact us: slepc-maint@grycap.upv.es

slepc-maint@grycap.upv.es

Introduction
Basic Description

Further Details
Advanced Features

Concluding Remarks

Thanks!

http://www.grycap.upv.es/slepc

slepc-maint@grycap.upv.es

http://www.grycap.upv.es/slepc
slepc-maint@grycap.upv.es

	Introduction
	Motivating Examples
	Background on Eigenproblems

	Basic Description
	Overview of SLEPc
	Basic Usage

	Further Details
	EPS Options
	Spectral Transformation

	Advanced Features
	Concluding Remarks

